
Network Coding for TCP Throughput Enhancement
over a Multi-Hop Wireless Network

P. Samuel David† and Anurag Kumar‡

Abstract—The poor performance of TCP over multi-hop
wireless networks is well known. In this paper we explore to
what extent network coding can help to improve the throughput
performance of TCP controlled bulk transfers over a chain
topology multi-hop wireless network. The nodes use a CSMA/CA
mechanism, such as IEEE 802.11’s DCF, to perform distributed
packet scheduling. The reverse flowing TCP ACKs are sought
to be X-ORed with forward flowing TCP data packets. We find
that, without any modification to the MAC protocol, the gain from
network coding is negligible. The inherent coordination problem
of carrier sensing based random access in multi-hop wireless
networks dominates the performance. We provide a theoretical
analysis that yields a throughput bound with network coding.
We then propose a distributed modification of the IEEE 802.11
DCF, based on tuning the back-off mechanism using a feedback
approach. Simulation studies show that the proposed mechanism
when combined with network coding, improves the performance
of a TCP session by more than 100%.

Index Terms—multi-hop wireless networks, network coding,
TCP performance over wireless networks

I. INTRODUCTION

It has been shown that if router nodes in networks com-
bine packets (e.g., by taking linear combinations), before
forwarding them, (a technique called network coding) then the
packet throughput of the network can be increased [1]–[4]. A
simple example, depicted in Figure 1, illustrates how such a
mechanism (also called “X-ORs in the Air” [4]) can improve
the throughput. It is assumed that Nodes A and C store the
packets that they have forwarded for some time duration. After
Node B receives a pair of packets from A and C, it XORs the
packets and, using wireless broadcast, transmits the XORed
packet so that both A and C can attempt to decode it. Nodes A
and C, after receiving the X-ORed packet, can use the packets
they have previously stored to decode the packets actually
meant for them. We see that instead of 4 transmissions overall,
the same data transfer can be achieved with 3 transmissions.
With reference to Figure 1, considering a TCP transfer from
left to right, we can exploit the above potential by combining
the rightward flowing TCP data packets with the leftward
flowing TCP ACKs. Since, in the original system a separate
contention needs to be made for each packet, whether data or
ACK, by enabling network coding over a string topology, we

Work on this project was supported by a research grant from Motorola.
†Indian Institute of Technology, Madras; this work was done while

this author was visiting the Indian Institute of Science under an In-
dian National Academy of Engineering Summer Fellowship; email:
samuel.david@smail.iitm.ac.in

‡Dept. of Electrical Communication Engg., Indian Institute of Science,
Bangalore; email: anurag@ece.iisc.ernet.in

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

1 2

34

1 2

Without Network Coding

With Network Coding

A B C

A B C

(a)

(b)

A’s packet

C’s packet

XORed packet

3

Fig. 1. An example to illustrate the network coding of packets flowing in
opposite directions in a multi-hop wireless network.

expect an appreciable increase in the overall throughput of the
TCP controlled transfer.

However, we find that just implementing the above mecha-
nism does not provide any substantial improvement in through-
put if the channel access mechanism is itself left unaltered.
For multi-hop wireless networks in which not all nodes are
within the transmission range of each other, the behavior of
the existing CSMA/CA based IEEE 802.11 MAC protocol
is known to be far from optimum. Many inefficiencies of
the IEEE 802.11 MAC over multi-hop networks have been
pointed out in the literature. In [5]–[7], the authors conduct
various simulations and conclude that the current version of
the IEEE 802.11 is inefficient in its function as a MAC layer
protocol for multi-hop wireless networks. Here our concern is
with the problem of lack of coordination between nodes when
CSMA/CA is used in a multi-hop environment.

Thus, in this paper we consider modifications to the
IEEE 802.11 MAC protocol in an effort to derive the expected
advantage of network coding for TCP controlled transfers over
multi-hop wireless networks. This paper in no wise attempts
to design an architecture for performing network coding but
uses a very simple model described in the later sections, to
perform network coding and in turn brings out the intricacies
involved and the required modifications necessary in order to
build an efficient architecture.

Before we report simulation results and discuss the proposed
modifications, we provide a theoretical analysis to obtain
bounds on the performance of TCP over a chain topology
wireless network whose nodes use CSMA/CA for channel
access. Such an analysis can enhance our understanding of
TCP over multi-hop wireless networks, and also provide a
bound against which to evaluate the proposed modifications.
We then propose a distributed scheme that works by using
packet drop events at each node as a feedback to tune the

1 2 3 4 5 6 n

Transmission
Range

Interference
Range

7

d

8

Fig. 2. A string topology of n nodes, the neighbors separated by distance
d. The example shows an interference range of two hops; i.e, k = 2.

IEEE 802.11 backoff mechanism of that node.
The rest of the paper is organised as follows. In Section II,

we introduce the network model, and the interference model,
and we describe the way network coding is implemented. In
Section III, we obtain the maximum throughput achievable
for a window based transport layer protocol. Then, we obtain
upper bounds on the throughput of a TCP session over the
string topology. We simulate the performance of TCP over
IEEE 802.11 with and without enabling network coding; these
simulations reflect the undesirable behavior of CSMA/CA over
multi-hop networks and are provided in Section IV. Based on
the observations made in the above sections, in Section V, we
propose a modification to IEEE 802.11 for use in the multi-
hop chain topology and obtain its performance. We conclude
in Section VI.

II. NETWORK AND INTERFERENCE MODEL

We consider a multi-hop network of n nodes, in which
the nodes form a string topology. The nodes are indexed
1, 2, 3, · · ·n. The neighbor nodes are equally spaced at a dis-
tance d; see Figure 2. In the absence of any other transmission
(and therefore, any interference) each node communicates
with its immediate one hop neighbor only. Pairs of nodes
that can directly communicate are viewed as having “links”
between them; thus there is a link between node 1 and node 2,
etc. The links are half-duplex. In addition, arbitrary links
cannot be used simultaneously owing to interference. Each
link’s propagation delay is very small compared to the packet
transmission time.

A. Definitions:

1) Link transmission rate: All radios use the same transmit
power, and transmit at the same bit rate of Γ bits per second.

2) Interference range (k): An interference range of k

implies that the transmission from a node can interfere with
the reception at any node less than or equal to k hops
away from the transmitting node. Define N0 as the receiver
noise power normalised to the transmit power, and β as the
minimum SINR (Signal to Interference plus Noise Ratio)
required at a receiver for successful reception. Then k is

such that

(

d
d0

)

−ζ

N0+

(

kd
d0

)

−ζ < β and

(

d
d0

)

−ζ

N0+

((

k + 1)d
d0

)

−ζ ≥ β

a b c d e

1 2 3 4

a b c

d e1

4

5678

Fig. 3. A multi-hop network string topology with n = 5 and k = 2.
{1, 5}, {1}, {2}, {3}, . . . {7}, {8} and the empty set are the only feasible
link activation sets.

where d0 is a reference distance, and ζ is the power law
attenuation factor. We only consider distance attenuation and
do not account for random fading. The above definition states
that the SINR at a receiver due to an interfering node k hops
away and a transmitting node 1 hop away will be less than the
minimum SINR required. If the interfering node is (k+1) hops
away, the received SINR will be greater than the minimum.
In Figure 2, the value of k is shown to be 2.

3) Network Coding Efficiency (γ): As we consider a single
session, we define network coding efficiency, γ, 0 ≤ γ ≤ 1,
as the ratio between number of transmissions of XORed
(encoded) packets at all nodes and the total number of trans-
missions of TCP data packets (with and without encoding).
Evidently, values of γ close to 1 are desirable so that the
contention offered by the backward flow of TCP-ACK packets
is small.

B. Link Activation Constraints

The above definition of k results in the following interfer-
ence constraints:

1) When a node is receiving, there can be only one trans-
mitting node in its k−hop neighborhood.

2) When a node is transmitting, there can be only one
receiving node in its k−hop neighborhood.

As an example, let us consider the feasibility of simulta-
neous activation of Links 1 and 4 in Figure 3. Since k = 2,
transmission from node d to node e would result in interfer-
ence at node b. This violates the first constraint, as node b has
two transmitting nodes in its k−hop neighborhood. Therefore
{1, 4} is not a feasible activation set. Similar analysis can be
done for all possible combinations and the feasible sets are
mentioned in Figure 3. Such link activation sets are useful for
us later in order to obtain bounds on the maximum throughput
achievable.

C. Network Coding Model

For the string topology that we consider, we define the
forward flow of TCP-DATA packets as Flow 1 and the
backward flow of TCP-ACK packets as Flow 2, and explore
network coding opportunities between Flow 1 and Flow 2. Our
model for network coding is similar to that used in [4].
We describe our model below:

���������
���������
���������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
���������

���������
���������
���������

T A T
A

T A X X

M M M

t

t

t

1

2

3

(1) (2) (3)

a cb a c a b cb

Mt 4

DIFS BACKOFF

 PHY MAC SIFS ACK SIFS ACK PAYLOAD

 node c node a

DIFS BACKOFF PHY MAC PAYLOAD SIFS ACK

DIFS BACKOFF RTS SIFS CTS SIFS SIFS ACK SIFS PAYLOAD

Packet exchange sequece if PAYLOAD is encoded (RTS/CTS)

Packet exchange sequence if PAYLOAD is encoded (Basic Access)

Packet exchange sequence if PAYLOAD is not encoded (Basic Access)

ACK HDR

Fig. 4. Three scenarios of packet transmission between consecutive nodes
a, b and c; shown as Panels (1), (2) and (3). t1, t2, t3, t4 are the successive
time instants of packet trasmissions where T=TCP-DATA, A=TCP-ACK,
X=XORed packet, M=MAC-ACK, HDR=PHY+MAC.

a) Just before the transmission of a packet (TCP-
DATA/TCP-ACK) belonging to a particular flow, the
transmitting node searches its own transmit queue for
a complementary packet (TCP-ACK/TCP-DATA) be-
longing to the other flow. If a corresponding packet
is found, both packets are XORed together and the
resulting XORed packet is transmitted.

b) Before the transmission of a packet, if a complementary
packet is not found in the transmit queue, the transmit-
ting node will not wait for a complementary packet to
arrive. Rather, it would just transmit the available packet
as a normal unicast transmit.

c) All the nodes store the transmitted packets for a suffi-
ciently long duration as these could be of potential use
in decoding the encoded packets that would be received
in the near future.

d) The encoded packet contains identifiers of the packets
XORed and is identified by a broadcast address in the
MAC header. The transmission time of an XORed packet
is the supremum of the transmission times of the packets
encoded, i.e., the TCP-DATA packet transmission time
TTCP−DATA. Whenever a node receives a broadcast
packet, it examines the identifiers of the packets XORed
and then attempts to decode the encoded packet.

e) As in [4], The encoded packets are transmitted as
pseudo-broadcast. However, we use synchronous ACKs
in our model. If a node transmits an XORed packet, the
transmitting node expects MAC-ACKs from both the re-
ceiving nodes. The ACK transmissions are scheduled in
a synchronous manner as shown in Figure 4. Following
the successful reception of an XORed packet, the node
ahead transmits a synchronous MAC-ACK after a SIFS.
After another SIFS, the node behind transmits its MAC-
ACK.

f) The above order is always maintained whenever the
packet transmitted is an encoded (XORed) packet. If

either of the encoded packets is not ack-ed within their
corresponding timeouts, the transmitting node retrans-
mits that particular packet, potentially encoding it with
another packet. If the transmitting node transmits a
packet that is not encoded, then the packet exchange
sequence is the same as for unicast transmissions.

g) The packet exchange sequence is similar for the
RTS/CTS mechanism, except that we have only one
RTS/CTS exchange with the forward node. We use only
the basic access mechanism in our simulations.

A customized patch for the ns simulator was developed to
simulate the above model. In the actual simulation, the nodes
donot implement the above algorithm literally and the packets
are not really XORed but the simulation mimics the above
model exactly.

III. PERFORMANCE BOUNDS

The performance measure that is of main concern to us
is the TCP throughput. Formally, we define TCP throughput
as follows. Assuming that each TCP DATA packet causes a
TCP ACK packet to be transmitted, let Ω(t) = the number of
returning TCP-ACKs in the time interval [0, t], then throughput
τ is

τ = lim
t→∞

Ω(t)

t

assuming that the limit exists. We consider node 1 as the
source node and node n as the destination node for the string
topology.

A. Bounds for Perfect Link Scheduling

Let us consider the following straight forward results which
were pointed out in [8]:

Lemma 3.1: The maximum number of simultaneous trans-
missions possible, for a string topology of n nodes is,

Tmax =

⌈

n − 1

k + 2

⌉

Under the assumption that we have a source node that is
infinitely backlogged, it is simple to prove that the maximum
throughput for a string topology of n nodes is given by

τ∗ =

{

1
n−1Γ, for 2 ≤ n ≤ k + 2
1

k+2Γ, for n ≥ k + 3

and this is achieved under perfect scheduling with all links
having the same scheduling ratio given by

fl =

{

1
n−1 , for 2 ≤ n ≤ k + 2
1

k+2 , for n ≥ k + 3

Since TCP is a window based protocol, it is useful to obtain
the throughput bound as a function of the window size W . To
do so, we make the following assumptions:

a) The window size is held constant at W for the entire
session. This would be true provided there are no packet
loss events during the session, in which case the TCP
window size reaches a maximum value Wmax and
remains constant thereafter.

b) The TCP-ACK packets do not flow through the network.
This can never be true. However, if network coding
efficiency γ = 1, we can the model the network traffic as
only TCP-DATA packets flowing forward, and the TCP-
ACK packets travelling backward “for free,” without
contending.

Having made the above assumptions, using Lemma 3.1, we
arrive at the following result [8].

Theorem 3.1: The throughput for a window based transport
layer protocol that always keeps W packets in the network has
an upper bound given by

τ∗ =











































1
n−1Γ, for 2 ≤ n ≤ k + 2

W
n−1Γ, for n ≥ k + 3 and W <

⌈

n−1
k+2

⌉

1
k+2Γ, for n ≥ k + 3 and W ≥

⌈

n−1
k+2

⌉

B. Bounds for Random Access Scheduling

Let us note that the above bounds were obtained assuming
perfect scheduling of channel access. Such bounds can be
expected to be loose when compared to the results from a
simulation in which IEEE 802.11 DCF is used. We can obtain
tighter bounds by using the analysis for CSMA multi-hop
networks developed in [9], [10], and recently extended in [11].
We review a slightly modified version of the model in [9],
focusing on link activity rather than node activity.

Let L denote the set of links in the multi-hop wireless net-
work. At any time certain sets of links can be simultaneously
activated. These are called independent sets [12]. Let A(⊂ 2L)
be the collection of all independent sets; we denote the empty
set of links by Φ(∈ A). When an independent set A ∈ A is
active, then certain links cannot be activated as these cannot
coexist with the ongoing transmissions in A, in the sense that
they will interfere with or will be interfered by transmissions
in A. On the other hand, a link i that is independent of A (i.e.,
A ∪ {i} is also an independent set) can be activated. In order
to obtain an upper bound on performance, let us assume that
the CSMA/CA mechanism is ideal in that a link that is not
independent of an active set of links (itself an independent set)
will not attempt to transmit (i.e., there are no “hidden nodes”).
Thus, for each link there are time periods when it is blocked
which alternate with time periods during which it can attempt
and transmit.

It is assumed in [9] that all links are permanently back-
logged. When Link i is unblocked, it attempts after an ex-
ponentially distributed time with mean 1

βi
. This models the

backoff time before an attempt is made on the link. Then a
packet is transmitted whose transmission time is exponentially
distributed1 with mean 1

µi
. The propagation delay is assumed

to be zero; hence, when a Link i attempts, all other links that
can potentially interfere with Link i instantly get blocked. The
probability that two links make an attempt at the same instant

1It is shown in [9] that this exponential assumption can be relaxed to include
any Coxian distribution.

µ
i

βi

βi

µ
i

µj

βj

µ
k

β
k

{j}

{i}
A

B
. . .

. . .

B U {k}

A U {i}

Φ

Fig. 5. A fragment of the transition rate diagram of the activation set CTMC,
S(t). Note that Link i is independent of the independent set A, hence Link i
attempts at the rate βi when the set of links in A are transmitting. Similarly,
Link k is independent of the independent set B.

is zero. Thus, collisions are not modeled. It follows that, if
the blocked periods of Link i were removed, then during the
remaining time, Link i will be seen to execute an alternating
renewal process, whose life-times are exponentially distributed
with parameters βi and µi. We note that βi is akin to the
effective attempt rate during back-off periods defined in [13].
However, since collisions are not modeled, the βi, i ∈ L, are
free variables, over which we will optimise the throughput
expression that we obtain.

With the above model, let S(t) ∈ A, t ≥ 0, denote the
independent set that is transmitting at time t. It is easy to see
that S(t) is a Continuous Time Markov Chain (CTMC) with
the transition rates shown in Figure 5. It can also be checked
that this transition structure satisfies the Kolmogorov Crite-
rion for reversibility (see [14]). It follows that the stationary
probability distribution π(A), A ∈ A, satisfies the following
detailed balance equations (where A ∪ {i} ∈ A)

π(A)βi = π(A ∪ {i})µi

It then follows that the stationary probability distribution has
the form

π(A) =

(

∏

i∈A

βi

µi

)

π(Φ) (1)

where π(Φ) is determined from the normalisation equation
∑

A∈A

π(A) = 1 (2)

Then the rate at which packets are transmitted over Link i is
given by

θi =





∑

{A∈A:i∈A}

π(A)



µi (3)

where the term in large brackets on the right hand side is the
fraction of time that Link i is carrying packets.

See also [15], [16], where Tobagi and Brazio studied the
underlying Markov process and derived conditions for general
access protocols to have similar product form state probabil-
ities. We use the theory developed above to obtain tighter
bounds for the throughput of TCP when network coding is

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
����� ���� ���� ����

1 2 3 4 5

β β β β
1 2 3 4

β
5

Fig. 6. A five node string topology showing the attempt rates for each node.

enabled. We illustrate our approach by an example.

Example: Let us consider the example topology in Figure 6.
Let L = {1, 2, 3, 4, 5}, where 5 denotes the reverse link
from Node 5 to Node 4. Recalling our earlier terminology,
we take the interference range k to be 2 here. This yields
A = {Φ, {1}, {2}, {3}, {4}, {1, 5}}. The attempt rates for
TCP-DATA packets at nodes 1, 2, 3 and 4 are represented by
β1, β2, β3 and β4 respectively. The service rates are denoted
by µ1 = µ2 = µ3 = µ4 = 1

TT CP−DAT A
=: µdata. If γ = 1,

the TCP-ACK packets reach from node 4 to node 1 by being
freely encoded with the forward travelling TCP-DATA packets.
But TCP-ACK packets will have to be unicast from Node 5
to Node 4 therefore we represent this by the attempt rate β5,
and service rate µ5 = 1

TT CP−ACK
=: µack. The assumption

that γ = 1 is valid because we are interested in calculating
a bound for the maximum throughput for the above network
when network coding is enabled.

Further, let us denote, for i ∈ {1, 2, 3, 4, 5},

ρi =
θi

µi

and
xi =

βi

µi

Let us write x = (x1, x2, x3, x4, x5). Then using (1), (2), and
(3), and defining

∆(x) = 1 + x1 + x2 + x3 + x4 + x5 + x1x5

it is can be seen that

ρ1(x) =
x1(1 + x5)

∆(x)

ρ2(x) =
x2

∆(x)

ρ3(x) =
x3

∆(x)

ρ4(x) =
x4

∆(x)

ρ5(x) =
x5(1 + x1)

∆(x)

(4)

where we have shown that the normalised link throughputs
depend on the link attempt rates x.

Further, since each TCP DATA packet causes a TCP ACK
packet to be sent backwards, we have

θ4 = θ5

Also we can write (see Section IV-A for the calculation of η)

µ4

µ5
=

TTCP−ACK

TTCP−DATA

= 0.3027 =: η

Hence
ρ5 = ηρ4 (5)

Let us now denote the end-to-end data packet throughput
normalised to µdata by ρ. The solution to the following
problem will then serve as an upper bound to the end-to-end
throughput.

max ρ

subject to

ρ1(x) :=
x1(1 + x5)

∆(x)
≥ ρ

ρ2(x) :=
x2

∆(x)
≥ ρ

ρ3(x) :=
x3

∆(x)
≥ ρ

ρ4(x) :=
x4

∆(x)
≥ ρ

ρ ≥ 0

xi ≥ 0 1 ≤ i ≤ 5

From the form of the constraints for Links 1, 2, 3, and 4,
we can see that at the optimum these constraints will be met
with equality. For if, at the optimum, some constraint had
a slack, say for Link j, then xj could be reduced slightly
without violating its own constraint, but while increasing the
throughputs of the other three links, resulting in an overall
increase in ρ, thus leading to a contradiction.

Thus, in order to determine the end-to-end throughput, we
wish to solve

ρ = ρ1 = ρ2 = ρ3 = ρ4 = ρ5
1

η
(6)

This yields the following equations

x1(1 + x5) = x2 = x3 = x4 = x5(1 + x1)
1

η

Equating the first and the last expressions yields

x5 =
ηx1

1 + (1 − η)x1

Using this to express x1(1 + x5) in terms of x1, we obtain

x2 = x3 = x4 = x5(1+x1)
1

η
= x1(1+x5) =

x1(1 + x1)

1 + (1 − η)x1

Under the condition (6), we can now express ∆(x) in terms
of x1 as

∆(x) = 1 + x1 + (3 + η)
x1(1 + x1)

1 + (1 − η)x1

=
(1 + x1)(1 + 4x1)

1 + (1 − η)x1

Finally, the end-to-end normalised throughput is given by

ρ =

x1(1+x1)
1+(1−η)x1

(1+x1)(1+4x1)
1+(1−η)x1

=
x1

1 + 4x1
(7)

We observe that if we want to maximise ρ (the normalised

end-to-end throughput), then x1 → ∞ and the limiting value
of ρ is 1

4 , the same value that was obtained with a much
simpler analysis done earlier. However, in practice the attempt
rate at a node is upper bounded. Since xi = βi

µdata
, 1 ≤ i ≤ 4,

and we have 1
βi

≥ DIFS + CWmin

2 (see Figure 4), and 1
µi

=
PHY + MAC + PAYLOAD + 2×SIFS + 2×MAC ACK, we
obtain a bound on xi, 1 ≤ i ≤ 4, given by

xi ≤ 4.108

where we take CWmin

2 = 31
2 slots. Imposing the above

condition, we find that ρ is maximised when x1 = 3.166; x2 =
x3 = x4 = 4.108; yielding ρ∗ =

x∗

1

1+4x∗

1

= 0.2317.
This completes the analysis of the 5 node example shown

in Figure 6.
There is an observation that we make from the above

analysis. The values of xi at the optimum exhibit a bell shaped
behavior as i varies from 1,2,. . . n. As a consequence, when
we bound the values of xi by xi ≤ 4.108, we always observe
that x⌈n

2
⌉ = 4.108. It also means that for the same desired

packet rate θi, the attempt rate βi is higher for nodes at the
center compared with others, implying that there is a higher
contention for the channel among the nodes located near the
center of the string topology than those located towards the
ends.

As the value of n increases beyond 5, the simultaneous
equations relating ρi and xi viz. (4) become highly coupled,
making it difficult to solve analytically. The bounds for such
values of n could be found by using iterative methods. One
such method which was pointed out in [10] is as follows:
After noting that at the optimum, ρi = ρ = ρn

1
η

for i ∈
{1, 2, . . . n − 1} and also x⌈n

2
⌉ = 4.108, We can rewrite (4)

in the form
xi = ρ Fi(x) (8)

where Fi(x) are continuous, monotonic functions in xi, i ∈
{1, 2, . . . n}. Beginning with some estimates of ρ and xi, we
can iteratively compute new estimates of ρ and xi from the
current estimates using the set of equations (8). The authors
propose in [10] that such iterations will converge if a solution
exists for the given set of equations (8). When we proceed
as mentioned above, the iterations indeed converge and the
throughput bounds that are obtained for different values of n

are tabulated in Table III.

IV. PERFORMANCE OF TCP OVER IEEE 802.11 STRING

TOPOLOGY.

We obtain the performance of TCP over IEEE 802.11 using
ns2 simulations.

A. Simulation Setup

Please refer to Figure 2 for the description of the topology.
We set d = 200m, Transmission range to 250m and Interfer-
ence range to 550m. Thus we have k = 2. In Tables I and II,
we tabulate the parameter specifications that we have used in
our simulations.

TABLE I
ns2 SIMULATION PARAMETERS.

Parameter Value

SIFS 10µs

DIFS 50µs

EIFS 364µs

Slot time (δ) 20µs

Basic Rate (Γb) 2 Mbps
Data Rate (Γd) 11 Mbps
(CWmin, CWmax) (31,1023)
Retry Limit (Short, Long) (7,4)

TABLE II
ns2 SIMULATION PARAMETERS.

Parameter Size(Bytes) Rate Time(µs)

TCP-DATA 1460 Γd 1062
TCP-ACK 40 Γd 29.1
TCP-IP Header 40 Γd 29.1
RTS 44 Γb 176
CTS 38 Γb 152
MAC ACK 18 Γb 72
MAC Header 47 Γd 34.2
PHY 24 1 Mbps 192

Using the parameter values in Table II, we obtain

TTCP−DATA = PHY + MAC + TCP-IP + TCP-DATA

+ 2 × SIFS + 2 × MAC-ACK

= 1481.09 µs

Proceeding similarly and using TCP-ACK instead of TCP-
DATA in the above equation, we have

TTCP−ACK = 448.36 µs

and hence
η =

TTCP−ACK

TTCP−DATA

= 0.3027

The TCP throughput at the network layer is given by

τ∗ = θ∗ × (TCP-DATA + TCP-IP)

where
θ∗ = ρ∗ × µdata

Using above equations, the throughput bounds are obtained as

τ∗ = ρ∗ × 8.102 Mbps

and are tabulated in Table III, and plotted in Figure 15.

B. TCP over IEEE 802.11

We perform ns2 simulation of TCP over a 10 node string
topology with IEEE 802.11 as the MAC and obtain the
performance. The simulations are run for 100s and the TCP

TABLE III
THROUGHPUT BOUNDS FOR THE STRING TOPOLOGY.

Nodes n ρmax τ∗[kbps]

1 1.000 8102
2 0.647 5242
3 0.393 3184
4 0.282 2285
5 0.232 1880
6 0.212 1718
7 0.197 1596
8 0.188 1523
9 0.188 1523
10 0.188 1523
∞ 0.188 1523

version that we use is TCP/Newreno. We study the variation
of TCP throughput as a function of TCP maximum congestion
window size Wmax.

The throughput obtained is plotted in Figure 7. In Section
III, we have obtained the bounds assuming that all the nodes
are permanently backlogged. In order to obtain the throughput
bound as a function of the window size W , we will have to re-
lax such an assumption which renders the problem intractable.
For W = 1, the throughput bound can be easily calculated
and assuming that saturation is attained at W = 3 (As was in
Theorem 3.1 for n = 10 and k = 2), we obtain a throughput
bound shown in Figure 7. The throughput bound for W = 2
is suitably interpolated. We see that the throughput obtained is
much lower than its corresponding bound especially as Wmax

becomes large. Motivated by the potential gains that network
coding can offer, we enable network coding for the above
topology. The model that we used for network coding was
described in Section II-C. The coding efficiency γ was around
50% and the throughput obtained is again plotted in Figure 7.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t [

K
bp

s]

TCP Maximum Window Size

TCP Throughput

IEEE 802.11/NC enabled
IEEE 802.11

Throughput Bound

Fig. 7. TCP throughput over IEEE 802.11 for 10 nodes, plotted vs. the
maximum window size, with and without network coding.

It comes as a surprise that enabling network coding did not

provide any appreciable improvement in the throughput. To
understand this unexpected behavior, let us monitor the TCP
congestion window.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 C

on
ge

st
io

n
W

in
do

w

Time [s]

TCP Window Evolution

IEEE 802.11

Fig. 8. TCP Window evolution for n = 10 and W = 20 over IEEE 802.11,
without network coding.

In Figure 8, we plot the TCP Window as it evolves over
time. We see that there are many instances at which TCP time-
out occurs which is potentially because of packet drop events
which occur as the number of retries for the transmission of
a packet reach the retry limits. We might expect that it is the
contention between the forward flowing TCP-DATA packets
and the backward flowing TCP-ACK packets that is causing
such packet-drops. If the above explanation is true, we would
expect the window behavior to improve if network coding is
enabled, as it reduces the number of TCP-ACK packets that
contend.

We plot the TCP Window evolution when network coding
is enabled in Figure 9. We find similar window behavior as
with network coding disabled! Again there are frequent TCP
timeouts.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 C

on
ge

st
io

n
W

in
do

w

Time [s]

TCP Window Evolution

IEEE 802.11/NC enabled

Fig. 9. TCP Window evolution with network coding. n = 10 and W = 20.

To further deepen our understanding, we simulate a hypo-
thetical scenario. If network coding was perfectly operational,
we expect no TCP-ACKs to contend for the channel. They can
be modeled as traveling back “freely” as TCP-DATA packets
move forward. To model the situation γ = 1, we simulated

a paradigm wherein the TCP-ACK packets reach the source
directly from the destination without traveling through the
network. Once TCP-DATA packets reach the destination, the
corresponding TCP-ACK packets are copied directly into the
source’s receive buffer. We have performed such a simulation
with a patch that we developed for ns2. We have also obtained
the TCP Window evolution for such a scenario and plotted it
in Figure 10.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 C

on
ge

st
io

n
W

in
do

w

Time [s]

TCP Window Evolution

IEEE 802.11/No Acks Returning

Fig. 10. TCP Window evolution with no TCP-ACKs returning. n = 10 and
W = 20.

Once again, we find similar TCP congestion window be-
haviour. From the above simulations, we understand the basis
for such behavior of throughput that we obtained in Figure 7.
Initially when the maximum TCP Congestion window Wmax

is small, there is very little contention in the network and as
Wmax increases, the advantage due to spatial reuse increases
and hence the throughput increases. But as Wmax increases
further, it results in increased contention which leads to more
collisions and packet drop events, decreasing the throughput
because of TCP timeouts. But why does the throughput remain
the same when network coding is enabled? As indicated by
Figure 10, even if we achieve coding efficiency γ = 1 i.e,
even if we have a single flow of TCP-DATA packets, we
find no improvement in the throughput. It points to the basic
problem of coordination among the nodes. Even if there is
a single flow of TCP-DATA packets, the forward traveling
packets contend with each other for the channel which results
in the packet drops that we see in Figure 9 or 10. Since this
contention is among packets belonging to the same flow we
can call this “self-contention”. Unless we solve the problem of
self-contention, any other performance improvement technique
would remain inefficient as was shown above in the context
of network coding.

V. A DISTRIBUTED SCHEME

A. An Adaptive Backoff

Having observed the problem, we now seek to find a
solution. Our approach is similar to the one in [8], but we
propose a distributed and a more general modification. In
principle, we would like to achieve the flow scenario shown
in Figure 11 which achieves the maximum throughput.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

1 2 3 4 5 6 7 8 9 10

TCP−ACK packet

Fig. 11. An ideal flow scenario with perfect scheduling. n = 10 and k = 2.

As we can see in Figure 11, every link has a scheduling
ratio given by f∗

l = 1
k+2 = 1

4 . More importantly, after a
node transmits a packet, it doesn’t transmit for the next 3
instants i.e, it defers its transmission for 3 × TTCP−DATA =
(k + 1) × TTCP−DATA and after 3 × TTCP−DATA from the
earlier transmission, it resumes its transmission. This is the
basic idea that we seek to implement - “After transmitting
a packet, a node has to defer its further transmissions until
the packet that it transmitted has crossed its and its receiver’s
k−hop interference range.” By doing so, the node will not
interfere with the transmission of the packet that it sent just
a moment ago. We make the node defer its transmission by
giving it a lower priority during the contention for the channel
i.e, by making its contention window CW large. Therefore,
as soon as a node transmits a packet, it sets its CW large
(512) for a duration of (k + 1) × TTCP−DATA. Let Tp =
(k + 1) × TTCP−DATA. After Tp s, the node again shrinks
back its contention window to gain the channel for another
transmission. Practically, the above proposition can be realised
by using a timer at each node. After transmitting a TCP-DATA
packet, the transmitting node sets a timer to expire after Tp

s. Every node adjusts its own contention window CW based
on its own timer’s state. If the timer is on, use CW = 512
otherwise, use CW = 32.

The above implementation seems fine. However, for the
above implementation to work, each node has to know its
own Tp. Note that in an ad-hoc network, k is different for
each node, and hence, each node has different Tp. Determining
the values of k for each node using distributed algorithms
is a tough problem by itself. We address this problem of
determining the interference range by estimating the values
using feedback from packet-drop events as follows. Let us
assume, for the above topology, that node 1 has its estimate of
k as 1 instead of 2. If nodes implement the above modification,
node 1 sets CW to 512 after the transmission of the first packet
but shrinks back its CW to 32 after 2× Tp instead of 3× Tp

and hence potentially gains the channel and collides with the
packet that it sent earlier at node 4 as shown in Figure 12.
However, if node 1 still had its CW large after 2 × Tp, the
probability of collision would be far less.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

p

After 2Tp

1 2 3 4 5 6 7

After T

After Trans

Fig. 12. Forward moving packets contend with each other if the amount
of time for which an upstream node defers is too short. Here n = 10 and
k = 2.

When such collisions happen frequently for node 1’s trans-
mission (because of its incorrect estimate of k), there would
be packet drop events because of retry limits. We use such
instances of packet drops as a feedback to improve node 1’s
estimate of k. When node 1’s estimate approaches the actual
value of k, the incidence of packet drop events at that node
→ 0. Since the minimum value of k is 1, each node begins
its estimate of k as 1 and if a node drops a packet, it will
increase its estimate of k by 1 (since k is an integer, the next
best value is k + 1). When implemented, this feedback works
well and we find that soon, nodes gain a very good estimate
of their values of k. Our proposed modification is summarised
in the algorithm which every node executes as stated below.

Algorithm 1 Proposed Modification to IEEE 802.11
if TCP-DATA is sent then

Set a timer which resets after Tp s
end if
if To send TCP-DATA/TCP-ACK then

if The timer is set then
CW = 512

else
CW = 32

end if
end if
if A packet is dropped then

k = (k + 1)
end if

In the above implementation, if a node overestimates its k

by k+1 or k+2, it does not affect the performance significantly
because if the neighboring nodes’ estimate of k is correct, it
still sees no collision. Since we are already trying to schedule
the links in some sense, we disable the RTS/CTS mechanism
as its use only has the impact of reducing the throughput by
added overheads.

B. Simulation Results

1) Straight-line string topology: In this section, we provide
simulation results from an implement of the proposed algo-
rithm in ns2. We consider the case k = 2. At first, we plot
the TCP congestion window evolution as shown in Figure 13.
As we can see, we succeeded in avoiding TCP-timeouts by
reducing packet-drop events as a result of effective scheduling.

We now proceed to plot TCP throughput for the string
topology with and without enabling network coding versus
the maximum congestion window size Wmax, for n = 10 in

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 C

on
ge

st
io

n
W

in
do

w

Time [s]

TCP Window Evolution

Maximum Window Size W = 20 Proposed Scheme
IEEE 802.11

Fig. 13. For the proposed scheme, TCP Congestion Window remains almost
stable at W = Wmax = 20.

Figure 14. We find that for larger values of maximum window
size Wmax, the TCP throughput does not drop but remains
steady with an improvement of 140% for n = 10. Moreover,
the gain only due to network coding can also be noticed. We
observe that saturation in throughputs is attained for window
sizes of 10 or more. And hence, the assumption of infinite
backlogging is not absolutely required and TCP window sizes
of 10 or more will suffice for the analysis.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t [

K
bp

s]

TCP Maximum Window Size

TCP Throughput

Proposed Scheme/NC enabled
Proposed Scheme/NC disabled

IEEE 802.11
Throughput Bound

Fig. 14. TCP throughput vs. the maximum window size with the standard
MAC, the new MAC without network coding, and the new MAC with network
coding. n = 10.

When we perform simulations, coding efficiency γ was
found to be around 50%. Plotted in Figure 15 is the steady-
state throughput (when TCP window size is unrestricted i.e,
for large values of Wmax) as a function of the number of
nodes n in the string topology. As we see, the proposed
algorithm achieves remarkably higher throughputs with an
overall improvement of over 100%.

2) Asymmetric string topology: We also perform simula-
tions on an asymmetric string topology in which different
nodes have different values of k as shown in Figure 16.

We plot TCP throughput as a function of Wmax with and

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

K
bp

s]

Number of Nodes

TCP Throughput Comparision

Proposed Scheme/NC enabled
Proposed Scheme/NC disabled

IEEE 802.11
Throughput Bound

Fig. 15. We can notice that after modification of the MAC, TCP throughput
improves. The source of the throughput bound here is Table III.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1

2

3

4 5

6
7

8

Fig. 16. A string topology in which different nodes have different values of
k. Here node 3 has k = 4 where as node 8 has k = 2.

without enabling network coding for the asymmetric topology
in Figure 16. The results are shown in Figure 17. Once again
we find the gain only due to network coding which we could
not observe without the modification of the MAC.

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t [

K
bp

s]

TCP Maximum Window Size

Throughput Comparision of TCP

Proposed Scheme/NC enabled
Proposed Scheme/NC disabled

IEEE 802.11

Fig. 17. The proposed modification gives a throughput improvement of
around 94% even for an asymmetric string topology.

The plots in Figure 17 also show that IEEE 802.11 performs
better compared with the proposed scheme for lower values
of TCP maximum window size which implies that there is
a possibility of fine tuning the proposed modification for

much better performance than what is observed, especially
for smaller window sizes.

VI. SUMMARY

In this paper, we dealt with the inefficiency of using IEEE
802.11 as the MAC layer protocol for wireless multi-hop
networks. Through various simulations, we have understood
that unless we modify the channel access mechanism, we
cannot achieve an appreciable gain in throughput due to
network coding. We also use a simple model of random access
in multi-hop networks in order to obtain throughput bounds.
Drawing inferences from the above, we proposed an effective
modification to IEEE 802.11 which solves the problem of
self-contention in a distributed fashion without any added
overheads. Thus, we could realise the potential of network
coding, only after the modification of the MAC.

ACKNOWLEDGMENT

We thank D. Manjunath for his guidance on ns simulations.

REFERENCES

[1] R.Alhswede, N.Cai, S.R.Li, and R.W.Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, 2000.

[2] S.R.Li, R.W Yeung, and N.Cai, “Liner Network Coding,” IEEE
Transactions on Information Theory, 2003.

[3] R.Koetter and M.Medard, “An algebraic approach to Network Coding,”
IEEE/ACM Transactions on Network Coding, 2003.

[4] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Medard,
and Jon Crowcroft, “XORs in the Air: Practical Wireless Network
Coding,” in ACM SIGCOMM, 2006.

[5] Mario Gerla, Rajive Bagrodia, Lixia Zhang, Ken Tang, and Lan Wang,
“TCP over wireless multi-hop protocols: Simulation and experiments.,”
in IEEE ICC, 1999.

[6] Mario Gerla, Ken Tang, and Rajive Bagrodia, “TCP performance in
wireless multi-hop networks,” in IEEE WMCSA, 1999.

[7] Shugong Xu and Tarek Saadawi, “Revealing the problems with 802.11
medium access control protocol in mult-hop wireless ad hoc networks,”
in Elsevier Computer Networks, 2002.

[8] Mathivanan Prabakaran, Arun Mahasenan, and Anurag kumar, “Analysis
and Enhancement of TCP Performance over an IEEE 802.11 Multihop
Wireless Network: single session case,” in IEEE ICPWC, 2005.

[9] Robert R. Boorstyn, Aaron Kershenbaum, Basil Maglaris, and Veli
Sahin, “Throughput Analysis in Multihop CSMA Packet Radio Net-
works,” IEEE Transactions on Communications, vol. COM-35, no. 3,
March 1987.

[10] Aaron Kershenbaum, Robert R. Boorstyn, and Mon song chen, “An
Algorithm for Evaluation of Throughput in Multihop Packet Radio
Networks with Complex Topologies,” IEEE Journal on Selected Areas
in Communications, vol. SAC-5, no. 6, July 1987.

[11] Michele Garetto, Theodoros Salonidis, and Edward W.knightly, “Model-
ing Per-flow Throughput and Capturing Starvation in CSMA Multi-hop
Wireless Networks,” IEEE/ACM Transactions on Networking, August
2008.

[12] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[13] Anurag Kumar, Eitan Altman, Daniele Miorandi, and Munish Goyal,
“New insights from a fixed point analysis of single cell IEEE 802.11
wireless LANs,” in Proceedings IEEE Infocom, 2005, Also Technical
Report No. RR-5218, INRIA, Sophia-Antipolis, France, June 2004, and
to appear in IEEE Transactions on Networking 2007.

[14] F.P. Kelly, Reversibility and Stochastic Networks, John Wiley, 1979.
[15] J.M.Brazio and F.A.Tobagi, “Theoretical aspects in throughput analysis

of multihop packet radio networks,” in ICC, June 1984.
[16] F.A.Tobagi and J.M.Brazio, “Throughput analysis of multihop packet ra-

dio networks under various channel access schemes,” in INFOCOM’83,
April 1983.

